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In  flows around three-dimensional surface obstacles in laminar or turbulent streams 
there are a number of points where the shear stress or where two or more component,s 
of the mean velocity are zero. In  the first part of this paper we summarize and extend 
the kinematical theory for the flow near these points, particularly by emphasizing 
the topological classification of these points as nodes or saddles. We show that the 
zero-shear-stress points on the surface and on the obstacle must be such that the sum 
of the nodes Clv and the sum of the saddles Cs satisfy 

CN-CS = 0. 

If the obstacle has a hole through it,  such as a passageway under a building, 

X N - X S  = -2.  

If the surface is a junction between two pipes, 

&-Cs = - 1. 

We also consider, in two-dimensional plane sections of the flow, the points where 
the components of the mean velocity parallel to the planes are zero, both in the flow 
and near surfaces cutting the sections. The latter points are half-nodes N' or half- 
saddles S'. We find that 

( C N  + &Z;,.) - (Xs + @&) = 1 - n, 

where n is the connectivity of the section of the flow considered. 
In  the second part new flow-visualization studies of laminar and turbulent flows 

around cuboids and axisymmetric humps (i.e. model hills) are reported. A new method 
of obtaining a high resolution of the surface shear-stress lines was used. These studies 
show how enumerating the nodes and saddle points acts as a check on the inferred 
flow pattern, 
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Two specific conclusions drawn from these studies are that: 
(i) for all the flows we observed, there are no closed surfaces of mean streamlines 

around the separated flows behind three-dimensional surface obstacles, which con- 
tradicts most of the previous suggestions for such flows (e.g. Halitsky 1968); 

(ii) the separation streamline on the centre-line of a three-dimensional bluff obstacle 
does not, in general, reattach to the surface. 

1. Introduction 
There are still many simple flows where one does not know even the broad patterns 

of the streamlines, instantaneously or in the mean, let alone tho magnitudes of the 
velocity and pressure. One such class of flows consists of moderate or high Reynolds 
number flows around (i) non-axisymmetric or non-cylindrical free-mounted bluff 
obstacles in uniform streams, (ii) any bluff obstacles in non-uniform streams and (iii) 
any bluff obstacles attached to a rigid surface. Another practically important and 
related class of flows consists of internal flows (lacking symmetry) such as those in 
pipe junctions, manifolds, expansions, etc. 

The complete pattern of these kinds of flows can be obtained only by experiment 
or by direct computation of the Navier-Stokes equation. (Limited regions of the flow 
are, of course, often amenable to analytical methods.) But even then the flow patterns 
deduced from flow-visualization studies, measurements or computation are usually 
incomplete and approximate. Sometimes there is a large variation in the flow pattern 
inferred from similar data obtained by different investigators. 

Some of the difficulty and ambiguity in inferring flow patterns from experiment 
and computation may be overcome by the application of kinematical principles and 
theorems, which are all based on the assumption that the velocity field is a continuous 
vector field and which do not involve any dynamical principles. More specifically, the 
application of kinematical principles can furnish answers to some of the basic kine- 
matical questions that one asks about complicated flow patterns derived from 
experiments or computations. 

( Q l )  Is the inferred flow pattern kinematically possible, i.e. is the flow pattern 
compatible with a continuous and finite mean or instantaneous velocity field ? 

(Q2) Given information about one aspect of the flow, e.g. streamlines in one or two 
planes of the flow or shear-stress patterns on part of a surface bounding the flow, can 
other aspects of the flow pattern be inferred 2 

(Q3) How can a complex flow pattern be described or characterized more succinctly 
than by many tabulations or graphs of velocities and streamlines? 

(Q4) What happens to the flow pattern if the topological character of the surfaces 
which bound the flow is changed (e.g. if a pipe meets another pipe or a building has a 
,,assageway underneath it) T 

In the first part of this paper (0 2) we derive some new results and review some of 
the previous results governing the kinematics of fluid Aow. Many of the early develop- 
ments in the kinematics of fluid flow were concentrated on surface shear-stress patterns 
with a particular emphasis on aeronautical problems (Lighthill 1963; Legendre 1965). 
More recently the kinematics of the streamline patterns have been developed by Smith 
(1972, 1975) and Perry & Fairlie (1974). Our work is an extension of these studies. 

We particularly concentrate on the flow near points on the surfaces bounding the 
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flow where the shear stress is zero, If these points are classified by their topological 
characteristics as saddles or nodes, rather than by their usual fluid flow characteristics 
as separation or attachment points, we can show that there are topological constraints 
governing the number of nodes minus the number of saddles. As is well known, the 
kinematic analysis also helps to elucidate from experimental shear-stress patterns 
whether a zero-shear-stress point is a separation or an attachment point. We show 
how the streamline patterns in any plane can also be examined in terms of nodes and 
saddles, but in this case a new concept of half-nodes and half-saddles has to be intro- 
duced. These results for streamlines are derived by topological rather than by calculus 
arguments, but are similar to those previously derived by Smith ( 1  972) for conical 
flows. 

In  the second part of this paper (Q 3) we describe various flow-visualization experi- 
ments which we have performed in wind tunnels and water flumes at  Colorado State 
University and Cambridge. We have studied laminar and turbulent flow around 
surface obstacles, such as cuboids and axisymmetric humps (i.e. simple models of 
buildings or hills). A novel technique for visualizing the surface flow pattern has been 
developed especially for these highly turbulent recirculating flows. 

By synthesizing our results with those of other flow-visualization experiments 
[notably those of Sutton (see Thwaites 1960), Norman (1975) and Furuya & Miyata 
(1972)l and velocity measurements near bluff obstacles (notably those of Castro & 
Robins 1977), we deduce and sketch the patterns of the mean-flow streamlines and 
surface-stress lines. We make particular use of the observed flow pattern near the 
points on the surface where the shear stress is zero, and thence draw some new con- 
clusions about the location of separation and attachment surface shear-stress lines 
and flow streamlines. That in turn leads to an important conclusion that, on the 
basis of existing experimental data, in the flow around surface-mounted obstacles 
closed streamline surfaces do not exist. This contradicts the widely quoted assumption 
of Halitsky (1968) that they do exist. 

These methods of applying kinematical principles to deduce complicated flow 
patterns from experiment and computation can be applied to  many types of flow 
other than the bluff'-body flows considered here. 

2. Geometrical and topological properties of surface shear-stress lines and 
streamlines 

2.1. Observing and interpreting surface JEoui patterns 

If the surface of a body (for example a model building together with the floor of a wind 
tunnel) is coated with a layer of oil containing a powder in suspension, then after a 
period of time the flow moves the particles of the suspension into a persistent pattern. 
We define a vector field 

p , ( G Y )  = (ePe2)) (2.1) 

which is parallel to the mean direction of particle displacements, averaged over all 
particles which arrive at  (x, y), where (x, y) is a point on a surface at  which the curvature 
is not singular. Therefore if a particle is displaced by (dx, dy) ,  then on the average 

(2.2) 
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Mean surface shear-stress vector 

Mean surface vorticity vector 
- _  + Mean streamline 

FIGURE 1 .  Sketch of the mean streamline immediately above and 
parallel to the mean surface shear-stress line. 

Because of the damping effect of the oil, in a turbulent flow the particles in the 
suspension do not follow the random motions of air particles above the surface. But 
it is reasonable to assume that, provided the oil fdm is thin enough to be unaffected 
by pressure gradients (Squire 1962), the mean displacement of the particles in the 
suspension P, is locally parallel to the mean velocity vector v of the air particles just 
above the surface. v(x, y )  is defined as the average of the velocity of all fluid particles 
arriving at (x, y) .  This is not the same as the mean velocity of particles randomly 
released at (x, y), as is well known in the study of turbulent diffusion (e.g. Monin & 
Yaglom 1971, chap. 5). 

Following Lighthill (1963), it is convenient to describe the mean velocity v(x, y) 
at a very small distance z from the surface in terms of the mean shear-stress vector e as 

v = (+I)z, (2.3) 

where v = ( u , ~ ) ,  6 = (cu, eJ, B = q f q ,  x n], (2.4) 

ow is the surface vorticity and n is the normal vector (see figure 1) .  By continuity, the 
vertical velocity component 

(2.5) 20 = -1 -1&2 
2 7  ) 

where A = v . 6 = aeu/ax + at.,/ay. 

Whether or not P, is exactly parallel to the mean velocity v, P, must be a con- 
tinuous vector field with continuous derivatives, and be zero (i.e. el = c2 = 0)  at 
only a finite number of points over the surface. Our strongest assumptions in analysing 
oil-film experiments are that where P, = 0, v = 0 and that the characteristics of P, 
and v (in the sense defined in 5 2.2) near these points are the same. 

2.2. Classifying the singular points 

Singular points 0 on a surface are defined as those points where the shear stress is zero: 

E ,  = = 0. (2.6) 
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FIGL-RE 2. Saddle points (J  < 0). (a )  A separation point ( A  < 0). where a < 1 and 
PeJdy > 0. (b )  An attachment point ( A  > 0 ) ,  where a > 1 and < 0. 

Depending on the derivatives of E ,  and E,,, in particular the divergence A and the 
Jacobian J = a(€,,, €,.)/a(%, y), the singular points fall into two topological classes (see, 
for example, Lighthill 1963). 

(i) Saddle points (J < 0 )  (figure 2), through which pass only two shear-stress lines 
(the critical lines), on each of which the direction of E changes sign, bot,h directions 
being towards 0 on one and both away from 0 on the other. 

(ii) Xodalpoints (J  > 0 ) ,  through which pass an infinite number of shear-stress lines, 
either all into the point or all out of the point,. At  a regular nodal point (aA2 > J > 0 )  
two straight critical lines through 0 exist (figure 3). The other kind of nodal point is a 
focus (J  > $A2), where all the shear-stress lines spiral into or out of 0 (figure 4). 

This classification is quite different to that in terms of separation points (where 
A < 0) and attachment points (where A > 0). 

By expanding o in terms of derivatives of its components one can also deduce 
the pattern of shear-stress lines near singular points. Consider the special case 
where (a) the critical lines are mutually perpendicular and ( b )  the streamlines are 
symmetric about the x, y axes, so that aqJay = aq./ax = 0. A t  a saddle point the 
shear-stress lines are described by 

y = Cx-", where a = I(aE,./ify)/(ae,,/ax)I = [l  -A/(a~,./ay)]-l (2.7) 
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FIGURE 3. Nodal points which are not foci (aA2  > J > 0). (a) Attachment 
point, A > 0. (b) Separation point, A < 0. 

and C is a constant along each line. Thus the shear-stress lines tend to converge more 
towards the x or y axis depending on whether 

a >< 1 (or A/(aq,/ay) 2 0) .  ( 2 . 8 ~ )  

For a regular node ( i A 2  2 J > 0), y = Cxa,  where a = [A/(as,,/ay) - 13-l. Note that 

a 2 1 (or A/(%./W >< 2), ( 2 . 8 b )  

shear-stress lines converge more towards the x or y axis (figure 3 b or 3a).  
From (2.8a, b )  one can infer from observations whether a singular point is a separa- 

tion or an attachment point. See 8 3. 
The critical shear-stress line at  a saddle or node onto which all the shear-stress lines 

converge asymptotically is the line where the separated flow surface meets the plane 
z = 0. This is called a separation or attachment line depending on whether A >< 0. 
Some distance from the zero-shear-stress point, a separation line can become an 
attachment line or vice versa without necessarily passing through another singular 
point. 

Note that shear-stress lines, including the special cases of separation and attach- 
ment lines, may connect saddles to nodes, or nodes to nodes or saddles to saddles. 

Rarely, if ever, does A = 0 or a = 1 at a saddle point. 

A/(ae,/ay) > 1 if J > 0. Depending on whether 

2.3. Counting the number of zero-shear-stress points 

One of the main reasons for classifying the zero-shear-stress or singular points in 
topological t,erms as nodes and saddle points is because there is a relation between 
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FIGURE 3. hTodal points which are not foci (*Az > J > 0). (a)  Att.achment 
point, A > 0. ( b )  Separation point, A < 0. 

and C is a constant along each line. Thus the shear-stress lines tend to converge more 
towards the x or y axis depending on whether 

a >< 1 (or A/(a~,/ay) 3 0). ( 2 . 8 ~ )  

For a regular node (&Az 2 J > 0), y = Cx", where 01 = [A/(ae,./ay) - 11-l. Note that 

a 2 1 (or A/(as,/ay) 2 2 ) ,  ( 2 . 8 b )  

shear-stress lines converge more towards the x or y axis (figure 3 b  or 3a).  
From (2.8a, b )  one can infer from observations whether a singular point is a separa- 

tion or an attachment point. See $3 .  
The critical shear-stress line at  a saddle or node onto which all the shear-stress lines 

converge asymptotically is the line where the separated flow surface meets the plane 
z = 0. This is called a separation or attachment line depending on whether A 5 0. 
Some distance from the zero-shear-stress point, a separation line can become an 
attachment line or vice versa without necessarily passing through another singular 
point. 

Note that shear-stress lines, including the special cases of separation and attach- 
ment lines, may connect saddles to nodes, or nodes to nodes or saddles to saddles. 

Rarely, if ever, does A = 0 or a = 1 at a saddle point. 

A/(ae,.ay) > 1 if J > 0. Depending on whether 

2.3 .  Counting the number of zero-shear-stress points 

One of the main reasons for classifying the zero-shear-stress or singular points in 
topological tJerms as nodes and saddle points is because there is a relation between 
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FIGURE 4. Nodal points which are foci (J > )Az). (a) Separation (A < 0). (b) Attachment (A > 0). 
(c) Neither separation nor attachment ( A  = 0). (Not possible in a viscous flow at a finite Reynolds 
number.) 

the number of nodes EN and the number saddles C,. For an isolated three-dimensional 
body, the topological equivalent of a sphere, there holds the well-known Poincarh- 
Bendixson (PB) theorem (more familiarly known as the ‘hairy sphere’ theorem) that 

C N - Z S  = 2 (2.9) 
(Lighthill 1963; or Flegg 1974). 

This result needs to be modified before being applied to the flow around a three- 
dimensional body B placed on a plane P. We can regard the plane as the upper surface 
of an imaginary three-dimensional body. The total number of nodes minus the total 
number of saddles, CN - C,, on the imaginary body must be the same whether €3 is 
on the plane or not. Therefore 

( Z N - C S ) P + B  = (2.10) 

In other words there must be two nodes, one upstream and one downstream at infinity; 
see figure 5.  As we show in 3, this result is useful for wind-tunnel investigations of 
three-dimensional obstacles. 

It is also instructive to prove (2.10) by the PB theorem for the index of an isolated 
singular (or critical) point (Coddington & Levinson 1955, chap. 16). Assume that 
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Imaginary body infinity 
downstream 

FIGURE 5. The imaginary three-dimensional body attached to the 
surface plane P and the real body B. 

FIGURE 6. Showing how Afl is calculated on the imaginary lcops L, LB and L- 
drawn on the surface. - +-+, loops; e, typical shear-stress lines. 

~ ( x )  = (eu, 8,) is a continuous, bounded, real-valued vector function with only isolated 
singular points defined on a plane surface. 8 is defined as the angle between a(x) and 
any fixed line, say the x axis (see figure 6). The PB theory shows that, if A0 is the change 
in 0 as x travels round a simple closed loop L on a plane, there being no singular points 
on L, then 

where the superscript L on C denotes the number of singular points within L. Equation 
(2.11) is not necessarily true on a curved surface (AWis called the index in PB theory). 
If a loop L, is taken far enough from the body on the plane where the shear-stress 
lines are parallel then, by inspection (see figure 6)) = 0, so (2.10) follows from 
(2.1 1 ) .  (If the surface on which the body lies is, say, part of a sphere (2.11) is not true. 
But if this part of the sphere were distorted onto a plane, then (2.1 1)  could be applied 
and (2.10) would follow, because Cg)  - ELL) is not affected by topological distortions.) 

Sometimes the nodes and saddles on the surface of the body are not known but 
the direction of tha shear-stress lines is known on LB, the line where the body meets the 
plane. Then by inspection of the shear-stress lines on LB, A@B) and therefore 
(ZN - Z S ) R  on the body can be calculated. Thus in the example in figure 7 

A&5)/27 = zg) - EL"), (2.11) 

(C, - &)& = - 1 * 
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Pipe join Image pipe join 

FIGURE 8. Zero-shear-stress points on the surface of two pipes where they join. 

Now if the body has a hole through it (or a model building has a passageway under- 
neath), as does the body B, in figure 7, then the surface plus the body become part of 
a double torus, for which the genus g = 2. Therefore 

( E N  - W P + B *  = - 2, 

i.e. there are two more saddle points than nodal points in such a flow. 
Another problem is the junction of two pipes. First consider the surface shear-stress 

lines on the inner surface of the pipe; then consider an image pipe junction, as shown 
in figure 8, and finally connect the pipes together. A double torus results. Whence it 
follows that, if the subscript i denotes the singular points on the image pipe, 

(2.13 b)  

so that 

c, + z'"i - (2s + CS,) = - 2, 

Z'N-zS = - 1.  (2.14) 

In  many pipe junctions it is observed that there are no nodes and one saddle point, 
as is shown to be topologically necessary by (2.19). An image system is often useful 
in the topological classification of flows. 

2.5. Mean streamline pattern 
If v = (u(z, y, zo), w(x, y, zo),  w(z, y, z,,)) is the mean velocity in the x, y plane for a con- 
stant value of z, say zo, the plane may be bounded externally, say by a plane at  y = 0, 
and internally by a body B. Then the mean streamlines are solutions of the equation 

dx/u = dy/V. (2.15) 

Since (u, w )  (x, y) is a vector field V(x, y) with only a finite number of singular points 
in the interior of the flow at which V = 0,  it follows that saddle and nodal points can 
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FIGURE 9. Saddle points and nodes in the streamline pattern on a section through the flow, 
denoted by S ,  N in the flow and S’, N’ on the surfaces. (The latter are half-saddles and half-nodes.) 

be defined as in 9 3. Perry & Fairlie (1974) made a special study of this particular 
application of the phase-plane theory of a differential equation. However, they did 
not attempt to develop an arithmetic for the number of nodes and saddle points. 

Using calculus and contour-integration arguments for streamlines in conical flows, 
such as those around delta-wing aerofoils, Smith (1 972) showed that there is a relation 
between the numbers of nodes and saddles for streamlines. A similar analysis can be 
used for any two-dimensional pattern of streamlines, in a two- or three-dimensional 
flow.? A more revealing argument (due mainly to Mr A. J. Casson of Trinity College, 
Cambridge) is exclusively topological. 

Consider the streamlines in a two-dimensional plane z = zo which cuts a surface, 
and possibly one or more closed surfaces not connected to the surface in this plane 
(in which case the region is multiply connected). Let the nodes be labelled N and the 
saddles S. There will also be half-nodes or surface nodes N‘ and surface saddles S’ 
(not to be confused with nodes and saddles in the shear-stress lines on the surface). 
See figure 9, in which only one body is located above the plane, so that the region is 
doubly connected. 

First map the space above the surface into the region O P X Y  shown in figure 10. 
The nature of each singular point is unchanged. Next consider an image space 
Oi Pi X i  Yi containing images of the nodes and saddles and an image body. Then 
connect the two spaces along OP and Oi P, and bend the surface into a cylinder until 
X Y connects with Xi yi. Finally, stretch and indent the surfaces around B and Bi 
until B touches Bi, as shown in figure 11, and connect the ends of the cylinder to form a 
double torus. On the surface there are now only complete nodes and saddles; all the 
half-singular points S’ and N’ have been joined to their images, Si and N;.  

Thus applying (2.12) and dividing by 2 leads to 

(EN + &&) - (2, + &ES) = 1 - n, (2.16) 

where this two-dimensional slice of the flow is n-tuply connected. For a singly con- 
nected region, with no body, n = 1 ;  with one body present as in figure 9, n = 2; with 

t In  a three-dimensional flow these streamlines are not in general the projection of the three- 
dimensional streamlines onto the plane z = zo, nor are they particle paths even in a steady flow. 
They are defined by (2.15). 
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X Y 

xi Yi 
FIGURE 10. Mapping the flow in figure 9 onto O P 2 Y  and the image system onto Oi Pi.Yi Yj.  

two bodies present, n = 3. The result (2.16) is essentially the same as Smith's (1972) 
for conical flows. 

A nice demonstration of this result (as was pointed out to us by M. J. Lighthill) 
can be given for potential flow past a circular cylinder when it has a circulation I' 
around it (Batchelor 1976, p. 542). For I' less than a critical value To, there are two 
surface stagnation points on the cylinder, so - &Ss = - 1, which agrees with (2.16) 
since n = 2. Then if for I' greater than ro there are no singular points on the cylinder, 
the topological result (2.16) indicates that there must then be one saddle point in the 
flow since - C, = - 1, as indeed the dynamical calculations show. 

Where the surface bounding the flow has a sharp angle, as for a cuboid on a plane, 
it has been proved by considering the locally low Reynolds number two-dimensional 
flow that there may be an infinite number of vortices with infinitely small velocity 
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squeezed into the corner (Moffatt 1964). Therefore in this case there will be, in prin- 
ciple, an infinite number of nodal points and saddle points in a finite area across the 
flow. Consequently there is, in general, no upper bound to Z.v or C,, and therefore 
more and more detail may be found by closer and closer inspection of flows with sharp 
bounding surfaces. 

What are the consequences of observing only a finitme number of these vortices? 
Provided t,hat the ‘truncated’ streamline pattern is continuous, so that there are no 
unclosed streamlines pointing into or out of the corner, the neglected vortex pattern 
must contain an equal number of nodes and saddles [in the sense of (2.16)]. Conse- 
quently the observed or ‘truncated‘ streamline pattern, which contains less detail 
and fewer nodes and saddle points than the actual flow, must satisfy (2.16). One 
might describe this as a ‘kinematical truncation principle’. 

3. Flow patterns from flow-visualization experiments 
3.1. Visualization techniques 

A novel oil-film technique was developed to obtain high resolution of mean shear-stress 
lines near singular points in highly turbulent flows. The film was a suspension of zinc 
oxide powder in ‘Crisco’ oil mixture. The mixture ratio (in volume) was 10% zinc 
oxide powder and 90 yo Crisco oil. The model was set on a Plexiglas base plate 0.96 m 
(38in.) wide, 1.32m (52in.) long and 0.3cm (0.125in.) thick. The surface of the model 
and the base plate were coated uniformly with a layer of oil mixture. After the wind 
tunnel had been run for a period of time, the flow moved the suspended particles into 
a consistent pattern. A result such as those shown in figure 12 (plates 1 and 2) took 
about, one h o w  to obtain. 

The advantage of this method over the conventional use of titanium oxide in a light 
oil (Maltby & Keating 1962) for flows with low turbulence levels is that it avoids the 
excessive accumulation of powder a t  zero-shear-stress points. This can be particularly 
marked at foci (nodal singular points) downstream of surface obstacles. The dis- 
advantage is the slowness of the development of the surface fdm. 

Titanium tetrachloride was used for smoke studies at  C.S.U. The smoke was either 
released from a bronze pipe, which could be held at any position in space, or injected 
inside the models and/or the base plate and then released from equally spaced holes 
on the surface of the model and base plate. The latter method gives significantly 
better resolution than the use of a single smoke source, especially for studying the flow 
pattern in the regions close to the base plate and model surfaces. Conventional paraffin 
oil smoke was used at Cambridge. 

Flow-visualization experiments around bluff bodies can also be performed very 
effectively in water channels. Then dye released on the surface can indicate surface 
shear-stress patterns and the location of zero-shear-stress points, but not as well in 
a turbulent flow as good oil-film studies. In laminar flow streamlines can be more 
easily studied using dye and hydrogen bubbles in water than smoke in air. A masterly 
demonstration of this technique in the study of flows near surface obstacles has been 
given by Furuya & Miyata (1972). In  rather less masterly fashion we did the same in 
slow-moving ( < 5 cm/s) water flumes in Cambridge. Our experiments showed very 
clearly the connexion between surface shear-stress patterns and streamline patterns. 
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Such experiments give one confidence in inferring mean flow patterns from surface 
shear-stress patterns in complex turbulent flows. 

3.2. Surface flow pattern 

Using the oil-film visualization techniques described in 3 3.1, the patterns of surface 
shear-stress lines have been observed in turbulent flows around cuboids with various 
shapes, placed at various angles to the flow, and in turbulent flows around axisymmetric 
humps. The experiments were performed in a large industrial aerodynamics wind 
tunnel (2 x 2 m) at Colorado State University (C.S.U.) and in small (e.g. 45 x 45in.) 
wind tunnels at the University of Cambridge. At C.S.U. the boundary-layer thickness 
6 was 1.2m and the heights h of the obstacles were about #I. (Further details are 
given by Woo, Peterka & Cermsk 1976.) At Cambridge the ratio h / 8  was about 5; 
the boundary layer and the free stream were turbulent. The intensity of the free 
turbulence was varied up to about 5 yo. 

Figure 12 (plates 1 and 2) shows the oil-film flow patterns on the surface around 
( a )  a cuboid (h = 6.5 em) perpendicular to the flow and ( b )  a cuboid a t  47" to the flow. 
Here h/6 -N 0.1 and the Reynolds number for the cuboid -N 7 x SO4. It has often been 
noticed that the patterns are broadly similar whether h/6 % 1 or h/8  < 1 (e.g. Sharan 
1975). The positions of zero-shear-stress points vary as h/8  varies and the number of 
such points upstream of the obstacle also varies. Similar patterns to those in figure 12 
were found in our experiments at Cambridge when h/8  Y 5 and Re 2: 4 x lo4. In 
separate experiments the obstacles themselves were coated with an oil film, particu- 
larly to locate the positions of zero-stress points and separation and attachment 
lines. (For similar results see also Yu 1975.) 

From these photographs and others, the surface shear-stress patterns over the 
surface and the obstacles were deduced. In  drawing these patterns, sketched in 
figure 15, we have concentrated on the zero-shear-stress (or singular) points and the 
critical lines. Using the kinematical rules governing the shear-stress pattern on these 
lines, stated in 3 2 and depicted in figures 2-4, we can identify which critical lines and 
singular points are separation and which are attachment lines and points. These are 
marked on the drawings. The exact nature of the flow near some critical points is 
difficult to discern from photographs. Sometimes only a study of the movement of the 
particles in the oil film enables a definite conclusion to be made. 

In the shear-stress pattern on the plane around a cube (figure 13b), note that there 
are five saddle points ((&)p = 5) and seven nodes ( ( Z N ) l ,  = 7). Note that this figure 
is distorted to show all sides of the cube as well as the plane. By examining the direction 
ofthe shear-stress lines along L,, the line where the cube meets the plane, we find that 
A6(LB) = - 4n. This agrees with the value of A6 determined by the topological result 
(2.1 t ) for this case where (EN - & ) p  = - 2. It also means that on the cube there must 
be two more saddle points than nodes. For the cuboid at  an angle to the flow (figure 
S ~ C ) ,  we have drawn only the surface shear-stress lines on the plane and ensured that 
(2.10) is satisfied. 

The shear-stress pattern near the corners of the cube is not exactly clear. However 
we can tell whether there are more nodes than saddles or vice versa in any small region 
by calculating A0 around a small circle surrounding the region. That is how we deduce 
t,hnt on only one of the corners, the rear upper corner, is there a node. 
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(b)  

FIGURE 12. Photographs of tho distribution of zinc oxido powder in Crisco oil on tho surfwe of 
a wind tunnol around R cuboid (6.5 x 6.5 x 20cm) (a) porpondicular to tho flow and ( b )  at 47" to 
tho flow. 
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FIGURE 13. Shear-stress lines on the surface of a plane and on two cuboids, placed at  different 
angles to the flow, based on our wind-tunnel experiments. (a) 9 cuboid (6.5 x 6.5 x 20cm) per- 
pendicular to the flow. (b) A cube (6.5 cm3) perpendicular to the flow. (c) A cuboid (6.5 x 6.5 x 20 cm) 
at  47" to the flow. -, shear-stress lines; ---, shear-stress lines through singular points; s.1., 
separation lines; a.l., attachment lines; N, surface node; s, surface saddle; subscript 8, separation; 
subscript a, attachment. (For clarity some fine detail has been excluded from (a). For further 
details see Woo et nl. 1976.) 
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FIGURE 14. Shear-stress lines and zero-shear-stress points on the surface of an 

axisymmetric bell-shaped hump. Laminar flow; Re Y 700; maximum slope = 0.2. 

Because of the difficulty of elucidating the shear-stress pattern near the corners, 
we also studied the surface and streamline flow pattern round axisymmetric bell- 
shaped hills; see figures 14 and 16. In laminar flow in a water channel at a low Reynolds 
number ( N 700) with h/6 2: a, we observed the surface pattern shown in figure 14. 
The maximum slope of the hill is about 0-2. A somewhat different wake flow with a 
more complex flow structure was found at a higher Reynolds number ( 2 1  lo4) in a 
turbulent boundary layer with h/6 N 0.1 and a maximum hill slope of about 0.9. 
In  that case a horseshoe vortex structure is observed upstream of the hill. Note 
particularly that in the laminar flow (figure 14) there is a separation line at  right angles 
to the main flow direction passing through the downstream, nodal point. This critical 
line joins the upstream separation line at the upstream saddle point. But the most 
remarkable feature of the flow pattern in figure 14 is that all the singular, zero-shear- 
stress points are separation points. This flow is almost the simplest kind of three- 
dimgnsional separated flow and yet has this remarkable property. We found that at a 
Reynolds number of 700 a cube also has a separation line instead of an attachment 
line at the rear of the recirculating region in the wake. 

3.3.  Mean streamline pattern 

From the surface flow patterns and information derived from visualization of the 
flow, by smoke, hydrogen bubbles, dye etc., we can sketch with some confidence the 
general pattern of the streamlines. On the basis of the similarity of the patterns of 
the surface shear-stress lines for different levels of turbulence and velocity profiles (or 
h/S) ,  it seems reasonable to use flow-visualization data from different flows to help 
draw conclusions as to the flow pattern. 
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In  figures 15 (a )  and (b) the mean flow patterns round a cube and a cuboid in a tur- 
bulent boundary layer are sketched. The singular points in the flow and on the surfaces 
of the mean streamline patterns satisfy the topological constraint (2.16). For example, 
in figure 15 (6) 

c, = 7, c, = 1, &? = 0, cs = 12, 

so that (Z,+*XN*)-(X,g+*Z,y) = 7 - ( 1 + 6 )  = 0. 

This agrees with (2.16), since the region is singly connected, so that n = 1.  The mean 
streamlines, in a plane parallel to the upstream flow, off the centre-line are difficult 
to deduce and not very helpful for interpreting the flow. The overall flow pattern is 
best depicted by a three-dimensional sketch of the streamlines, such as that shown 
in figure 15 (c). 

Note that the separated flow over the upper surface of the cuboid does not reattach 
(figure 15a),  which is a similar observation to others who have studied flow over two- 
dimensional surface prisms (e.g. Counihan, Hunt & Jackson 1974). On the other hand 
the separated flow over the cube does reattach (figure 15b), which is a similar finding 
to that of Castro & Robins (1977). 

The streamlines in the horseshoe vortex pattern upstream of the obstacle are 
inferred from the mean surface shear-stress pattern and smoke visualization studies 
in laminar boundary layers by E. P. Sutton (see Thwaites 1960) and Norman (1975). 
Similar streamlines were previously deduced from Sutton’s photographs by Perry & 
Fairlie (1974). It now seems to be a common observation that the number of vortices 
upstream is a sensitive function of the flow parameters. Up to seven vortices have 
been observed in some cases ! 

A particularly important practical question is whether there is, or is not, a closed 
mean streamline surface (otherwise knows as a ‘bubble’ or a ‘cavity’) in the wake 
of a surface-mounted bluff obstacle. The streamlines in figure 15 all show that this 
does not exist. Our reasoning is as follows. If such a surface exists, then it must pass 
through the centre-line separation point C, (on the front or the rear of the top of the 
cuboid depending on whether the flow does not or does reattach to the top) and 
through the zero-shear-stress point C, at  the downstream end of the recirculating flow 
region. There must then be a critical surface shear-stress line from C, to C,, and such 
a line would begin as a separation line and end as an attachment line. In fact we 
observe that there is no critical line from C, to C, in figure 15 ( a ) ,  ( b )  or (c); so for these 
cuboids we conclude that there is no closed surface in the wake. This conclusion must 
also follow from the detailed velocity measurements (using a pulsed-wire anemometer) 
around a cube at high Reynolds number in a turbulent flow by Castro & Robins 
(1977). They find that a trailing vortex pattern starts at the upper corners of the cube. 
Such a vortex can exist only if mean streamlines are drawn into it. It is kinematically 
inconsistent with a closed surface surrounding the obstacle. 

A separate, but related, question is whether the mean streamline from the separa- 
tion point C, reattaches to the surface at  C,. There is no kinematic argument why this 
should not be so. A plausible dynamical explanation of the observed flow pattern over 
a cuboid a t  high Reynolds number is that it is due to the rolling-up of the vortex 
sheet from the top of the cuboid, and, if so, then streamlines enter the vortex both on 
and off the centre-line. In that case C, cannot be connected to C, by a mean streamline. 
In the limit in which the aspect ratio of the cuboid (i.e. the width normal to the 

7-2 
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FIQURE 15. Mean streamlines, singular points and flow pattern around a cuboid and a cube. 
(a) On the centre-line of a cuboid. (i) Plan view of shear-stress lines on the surface. (ii) Shear-stress 
lines on the top and sides of the cube. (b) On the centre-line of a cube. (c) Sketch of the flow pattern 
around the cube. N, node of streamline pattern; S, S', saddles of streamline pattern; subscript 8, 

separation; subscript a, attachment; N, surface node; S, surface saddle; C,, centre-line separation 
point at rear of obstacle; C,, downstream centre-line zero-stress point. 
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S,  No 
FIGURE 16. Mean streamlines and singular points on the centre-line plane of 

the flow over axisyrnmetric humps. (a) Laminar flow. ( b )  Turbulent flow. 

flowlheight) increases to  infinity the streamline through C, must approach that 
through C,. From visualization of the flow behind a step in two and three dimensions 
Wed6 (1 975, see particularly his figure 4) draws similar conclusions. 

The study of flow over a three-dimensional hump illuminates these questions. 
Figure 16 shows the centre-line streamlines over such humps in laminar flow and in 
turbulent flow. Clearly the flow over rounded obstacles, as with cylinders in two- 
dimensional flow, is more sensitive to the nature of the oncoming flow than the flow 
over obstacles with sharp edges. Figure 16 (a)  shows how in a laminar flow, when there 
are only separation points on the surface, there can be no closed surface of mean 
streamlines and no streamline connecting C, to C,. The wake flow pattern we observed 
is very similar to  those observed by Puruya & Miyata (1972) and Mochizuki (1961) 
over spheres on a plane in laminar boundary layers. None of these authors drew mean 
streamlines but from their dye and smoke photographs their flows in the wake would 
seem to be described by their sketch of the streamlines. Furuya & Miyata’s and 
Mochizuki’s observations show that, as their Reynolds number was increased and 
vortex shedding began, the mean streamline from C, began to approach the surface. 
This is the explanation for the different streamline pattern, sketched in figure 16 ( b ) ,  
which is deduced from smoke-visualization and water-flume observations a t  high 
Reynolds number ( N lo4). Note that in thelaminar ffow (figure 16a)  no shear-generated 
horseshoe vortices were set up, mainly because of the very low slope of the hump. I n  
laminar flow experiments on bluffer obstacles these horseshoe vortices are found to 
occur and probably affect the wake. (See Furuya & Miyata 1972; and also Gregory 
& Walker 1955.) 

An interesting conclusion from these investigations of the flow around cuboids and 
humps is that  there must be a t  least one value Recrit of the Reynolds number for any 
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(Cd) 

FIGURE 17. Mean streamlines and singular points observed in air flow around a cuboid 
(a model building) with a passageway underneath (same notation as figures 9 and 15). 

given flow at which the mean streamline from P, does reattach a t  Pd. For Re < Recrlt, 
the streamline does not reattach a t  all and for Re > Recrlt the st'reamline rolls up. 
So a t  Re = Recrit, it must reattach on the surface. 

I n  figure 17 we have sketched the mean streamlines around a rectangular block 
which has a passageway underneath it. Many buildings have such shapes and i t  is 
important to  know the flow patterns around them. The mean streamlines, which are 
sketched on the centre-line of the block, are based on smoke visualization and mean 
velocity measurements (h/6 N 3,  Re N 4 x lo4). The flow region on the centre-line is 
a doubly connected region (n  = 2 ) .  We find that 

c, =4, E N ,  = 0, c,= 1, c,. =4, 
(Z, + &Z.,T,) - (Zs + &Z,.) = - 1 = 1 - n, so that 

in agreement with (2.16). 

4. Conclusion 
The main conclusion of this paper is that useful kinematical principles and theorems 

exist, some of which we have developed. These help the study of complicated flow 
patterns which are inferred from experiments or computations. 

I n  the introduction we posed four basic questions that might be asked about a flow 
pattern. On the basis of $9 2 and 3 here are some answers. 

(1) If the topological constraints for the singular points of the surface shear stresses 
[equations (2.10) and (2.1 l)] and the streamlines [equation (2.16)] are not satisfied 
then the flows are kinematically impossible. Papers are not infrequently published 
containing such kinematically impossible flows. 

(2) I n  complicated flows some useful information can be gained about one part of 
the flow from knowledge of the flow in another part, for example by finding Z N  - Xs 
on part of a surface over which the flow is unknown, or inferring from the shear-stress 
patterns at a singular point whether it is a separation or attachment point. 

(3) We have discussed the flow around various three-dimensional surface obstacles in 
terms of the singular points of the shear stress and mean streamline pattern and in 
terms of the critical lines which emanate from these points. We have seen how tho 
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character, location and number of these points and lines vary with the shape of the 
bluff body, the Reynolds number and the upstream flow conditions. This type of 
discussion enables one to pick out the salient similarities and differences among complex 
three-dimensional flows. Once the topological and attachment/separation character 
of these points and lines have been determined by visualization or computation, the 
general flow pattern is effectively determined. This is simpler and more economical 
than describing the flow solely in terms of a large number of diagrams of mean stream- 
line patterns. Of course a few such diagrams are essential to an understanding of the 
flow. 

(4) We have seen how changes in the topological character of the surfaces bounding 
a flow (e.g. an increase in connectivity) can create additional singular points in the flow 
pattern (as in flow around a building with a passageway underneath) or can produce 
a singularityin the shear-stress pattern where none existed before (as with the saddle- 
point singularity on the wall of a pipe where a junction with another is made). 

To put this paper in perspective it should be remembered that topologically based 
kinematical theorems do not lead to solutions to the dynamical problems of fluid 
mechanics. But t.hey may help us to use experimental and computational information 
more effectively to that end. I n  that aense these theorems may have a similar role to 
that of catastrophe theory! 
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